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Neutral hybridization can overcome a strong Allee effect
by improving pollination quality
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Abstract Small populations of plant species can be suscep-
tible to demographic Allee effects mainly due to pollen lim-
itation. Although sympatry with a common, co-flowering
species may somewhat alleviate the problem of pollina-
tor visitation (pollination quantity), the interspecific pollen
transfer, IPT, (pollination quality) may remain a barrier to
reproduction in small populations such as new introduc-
tions. However, if the two species are crosscompatible, our
hypothesis is that neutral hybridization can help the small
founding population overcome the Allee effect by improv-
ing the quality of pollination. We tested this hypothesis
by using a novel modelling approach based on the the-
ory of kinetic reactions wherein pollinators act as enzymes
to catalyse the reaction between the two substrates: pollen
and unselfed ovule. Using a single locus, two-allele genetic
model, we developed a generic model that allows for
hybridization between the invading and the native geno-
types. Analysing the stability properties of the trivial equi-
libria in hybridization model as compared with the single
genotype invasion model, we found that hybridization can
either remove or reduce the Allee effect by making an other-
wise stable trivial equilibrium unstable. Our study suggests
that hybridization can be neutral but still be the key driver
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of a successful invasion by mediating pollen limitation.
Conservation programmes should therefore account for this
cryptic role that hybridization could play in plant invasions.
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Introduction

A small population size can have dire ecological and genetic
consequences (Ellstrand and Elam 1993; Willi et al. 2005;
Blackburn et al. 2015). Such situations arise in many cir-
cumstances, such as new introductions (Simberloff 2009), the
leading fronts of active invasions (Taylor and Hastings
2005), recovery from severe disturbances (Copson and
Whinam 1998; Chapuisa et al. 2004), peripheral or iso-
lated populations of an abundant species (Busch 2005)
and in rare species (Pickup and Young 2008). While both
large and small populations may be vulnerable to environ-
mental stochasticity (extreme weather events, floods, etc.),
small populations are particularly subject to extinction risks
related to demographic Allee effects (Ellstrand and Elam
1993; Lewis and Kareiva 1993; Liebhold and Bascompte
2003; Simberloff 2009). In plants, outcrossing species are
very likely to experience Allee effects because they rely
on pollinator services, which become less reliable when the
population size is small (Seeley et al. 1991; Kunin 1993,
1997; Ghazoul and Shaanker 2004; Ghazoul 2005). Repro-
duction may be limited by the low availability of pollen or
the ineffective transfer of the pollen to the small number of
plants. Further, a genetic Allee effect can arise if outcrossing
is governed by self-incompatibility systems where finding
a compatible mate carrying unmatched S alleles becomes a
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further hurdle to reproduction (Willi et al. 2005; Pickup and
Young 2008; Levin et al. 2009; Young and Pickup 2010;
Young et al. 2012). Plants in small populations, however,
may overcome some of these challenges if they occur in
sympatry with a common species.

When a common species co-occurs with a less abun-
dant species and their flowering periods overlap (they “co-
flower”), its presence can increase pollinator visitation rate
to the rare species through either increased attraction of their
joint floral display (Ghazoul 2006; Robson 2013) or via the
“magnet effect” where one species with a very attractive flo-
ral display acts as a lure to pollinators and thus enhances
visits to its neighbouring, less attractive species (Thomson
1978; Laverty 1992; Johnson et al. 2003). However, the rare
species may still be pollen limited because most pollen that
it now receives is from the common species and thus is
unable to fertilize its ovules (the pollen is “improper”, sensu
Rathcke 1983). These interspecific pollen grains may even
interfere with its own and hence increase the abortion rate
(e.g. Randall and Hilu 1990, Carney et al. 1996). The pres-
ence of a co-flowering species may thus, to some extent,
reduce Allee effects driven by the low quantity of pollina-
tion (sensu Kunin 1993), i.e. the low number of pollinator
visits, but the quality of pollination (sensu Kunin 1993), i.e.
deposition of proper pollen, remains a limiting factor to seed
production.

An interesting demographic situation arises if heterospe-
cific pollen arriving on the stigma of the rare species can
effectively fertilize ovules and, as a result, produce hybrid
seeds. The quality of pollination can be argued to have
increased, but the offspring are neither one species nor the
other. These hybrids have often been found to increase in
abundance and then spread, becoming a naturally occur-
ing taxon or an invasive entity in their own right, while the
rare species remains rare (Rieseberg 1997; Ellstrand and Ka
2000). The mechanism for this has almost exclusively been
assumed to be genetic, with the hybrid genotypes having
greater fitness than either parent (Ellstrand and Ka 2000;
Hovick and Whitney 2014). If, instead, the rare/newly arriv-
ing species increases in abundance and the hybrids decline,
at least two genetic explanations arise. Firstly, the hybrids
might be less fit than their parents and have been outcom-
peted by a species whose increase was inevitable. Secondly,
as a result of backcrossing, they might have increased the
fitness of the rare species, through either introgression of
locally adapted alleles or by allowing selection to act upon
new genetic combinations. But there is at least one other,
purely demographic possibility requiring no change in fit-
ness of genotypes but where hybridization is an essential
part of overcoming Allee population thresholds. The plau-
sibility of this mechanism has been demonstrated using a
simulation model verified by a case study (Mesgaran et al.
2016). Hybridization, followed by preferential backcrossing

to an incoming species at low abundance, was shown to
facilitate an invasion by improving both the quantity and
quality components of pollination. While the high local den-
sity of the common species increases the visitation rate
to the mixed patch (i.e. increased quantity), hybridization
allows heterospecific pollen grains to contribute to seed pro-
duction (i.e. increased quality). The relative importance of
pollination quality, however, remains an aspect deserving
attention, since interspecific pollen transfer, rather than vis-
itation rate, is the component that is directly affected by
hybridization.

The possibility for quantitative facilitation in co-
flowering (but non-hybridizing) species has been investi-
gated theoretically (Feldman et al. 2004; Hanoteaux et al.
2013) and empirical data supporting such a facilitation
mechanism have been reported from several experimental
and natural plant communities (Ghazoul 2006; Duffy and
Stout 2011; Sieber et al. 2011; Seifan et al. 2014). We are
unaware of any study exploring the possibility for a qualita-
tive facilitation that can result from a neutral hybridization
with no changes in the fitness (in the sense of equal competi-
tive ability and reproductive ouput of the colonizing species,
the common species, and/or hybrid offspring). While inter-
specific (i.e. improper) pollen transfer, IPT, (Waser 1978;
Caruso and Alfaro 2000; Morales and Traveset 2008) is
known as an interface mechanism in mixed stands of co-
flowering species, we hypothesize that hybridization can
turn those improper (sensu Rathcke 1983) pollen grains into
viable seeds and that crossing between the resultant hybrid
offspring or backcrossing with the parental species can
ultimately result in the recovery of virtually pure parental
genotypes (Huxel 1999). That is, if we assume a biallelic
locus with II , IN and NN indicating invading, hybrid and
native genotypes receptively, then 50 % of offspring result-
ing from a (back)cross between the heterozygote (hybrid)
and the invading genotype and 25 % of offspring from
hybrid × hybrid crosses are expected to be homozygous
for the invader locus. Over just a few generations of
such preferential crossings, the invading genotypes will be
recovered.

Using a novel modelling approach based on chemical
kinetic reactions, our objective of this study was to test
whether the hybridization enhancement of the pollination
quality can rescue an invading genotype that may otherwise
fail to establish because of Allee effects.

Models

In this section, we derive qualitative models, using the law of
mass action from kinetic reaction theory (e.g Murray 2002,
chapter 6), to characterize the dynamics of an invading plant
as related to the breeding system and pollinator behaviour.
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Mass-action model for plant-pollinator dynamics

The law of mass action states that the rate at which a reac-
tion occurs is proportional to the concentration of reactants.
Although originally designed for chemical reactions, the
concept and methodology can be applied to other disciplines
such as ecology (multiple species models) and epidemiol-
ogy (SIR models) (Murray 2002, chapters 3 and 10). In this
study, we used this approach to model the dynamics in an
annual plant system where the ovules and the pollen act as
two reactants to produce seeds. We assumed a mixed breed-
ing system where a plant species can produce seeds through
both self-fertilization and outcrossing. The relative contri-
bution of selfing and outcrossing to seed output is variable
and can range from a fully selfing (with zero outcrossing)
to an obligate outcrossing (with zero selfing) mating sys-
tem. The seed production through outcrossing is assumed
to depend entirely on animals (pollinators) as the agents of
pollen transfer between plants (assuming no wind or other
means of pollination) and hence pollinators can be consid-
ered as enzymes: necessary agents for the reaction to occur.
Let S stands for the reactant with S1 being the pollen and
S2 the ovule; E indicates the pollinator (enzyme), C1 is the
complex of pollinator with pollen (the enzyme and substrate
S1), C2 is the complex of pollinator depositing pollen loads
on the ovule of a recipient plant (the enzyme and the two
types of substrate S1 and S2) and N is the seed (product).
The kinetic reactions are written:

S2
k0→ N (1)

S1 + E
k1→ C1

k2→ E (2)

C1 + S2
k3→ C2

k4→ C1 + νN + (1 − ν)S2. (3)

where reaction (1) represents the production of seeds
through self-fertilization. Reaction (2) happens when a pol-
linator (E) picks up pollen and forms the complex C1

(pollinator + pollen): this complex is unstable and pollen
may become unloaded after some time and thus not avail-
able for fertilization. In reaction (3), a pollinator already
loaded with pollen (complex C1) brings the pollen into con-
tact with the ovules of the recipient plant to form complex
C2 (pollinator + pollen + ovule). The complex will result in
successful fertilization of ovules and thus produce seeds, N ,
with probability ν or abortion with probability 1 − ν. In this
last reaction, we always assume that the pollinator does not
deposit all of its pollen load to each flower. The biological
interpretations for the rate parameters ki (i ∈ {0, 1 . . . , 4})
are given in Table 1.

Equations 1–3 describe qualitatively the dynamics of
seed production, via self-fertilization (1) and outcross-
ing (2) and (3). Using a quasi-steady-state approximation
(Appendix A.1), we first derived a quantitative model
of ordinary differential equations, ODEs, to explore the
dynamics of N with respect to time. Both the depen-
dent and independent variables were then rescaled to
obtain non-dimensional ODEs (Appendix A.2) then used
to derive three different models: a model with a single
invading species, a model with two non-hybridizing species
(Appendix B) and the model that includes two hybridizing
species.

Model of a single invading species

As discussed in Appendix A, we simplified the model by
considering n to stand for the density of species without
regard to any within season life-cycle events. Whether n is

Table 1 Description and units for rate parameters used in kinetic reactions of the plant-pollinator model (1–3)

Parameters Descriptions Units

k0 Selfing ratea, i.e. ovules fertilized by the pollen from the same flower Ovules per unit time

k1 Rate of pollen uptake by pollinators from the pollen donor plants (a measure
of the attractiveness of the male partner to pollinators)

Pollen load per unit time per unit of pollinator

k2 Rate of pollen loss by the pollinator (a measure of the efficiency of the
pollinator in carrying pollen)

Pollen load per unit time

k3 Rate of pollen deposition on the stigmas of the recipient plant (a measure
of the attractiveness of the female partner to pollinators )

Pollen load per unit time per unit of pollinator

k4 Crude outcrossing ratea, i.e. the rate of cross pollination irrespective of
the fertilization (cross pollination may or may not result in successful
fertilization)

Complex per unit time

ν Fertilization success, also representing the compatibility between pollen
and ovule

Dimensionless

aNote that in ecology literature, selfing and outcrossing rates are usually referred to as the proportion of ovules fertilized by the pollen from
flowers on the same plant or the pollen from another conspecific plant respectively but here by rate, we mean the number of ovules fertilized per
unit of time
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treated as seeds or as mature plants has no effect on the
results derived from the model. Here, we will refer to n

as plant density but plant is used as a general term rather
than in the sense of a specific developmental stage such as
the contrast between a plant vs. seed stage. Following from
Eq. 24 derived in Appendix A, the simplified model for a
single invading species can be written as follows:

n′(t)
︸︷︷︸

rate of change

= n

⎛

⎜

⎜

⎜

⎝

A

︸︷︷︸

self-fertilization

+B
n

1+n+n2
︸ ︷︷ ︸

outcrossing

−(1+n)

︸ ︷︷ ︸

death

⎞

⎟

⎟

⎟

⎠

= F(n), (4)

where

A = d2k0k4

d2
1k3

, a measure of fertile selfing rate (5)

and

B = νk4e0d2

d2
1

, a measure of fertile outcrossing rate. (6)

Equation 4 thus describes the rate of changes in plant
density n over time, as a function of the reproduc-
tion through self-fertilization (parameter A) and outcross-
ing (parameter B), while assuming density-dependent and
density-independent death rates. The kinetic reaction frame-
work thus allowed us to mechanistically incorporate the
breeding system of plants into a population dynamics
model. This model was further extended to include more
than one species where the heterospecific crosses were
either infertile (Appendix D) or fertile and thus could form
hybrids (see below).

Model of two hybridizing genotypes

We expanded our model (4) to a system of two hybridizing
genotypes (species), namely the native (resident) geno-
type N and a new incoming (invading) genotype I . The
two genotypes interact with each other through density-
dependent regulations, e.g. death rate is a function of the
total population size. We also suppose that the pollen and
ovule of the two genotypes are compatible and hence they
can produce viable hybrid offspring H in the sympatric
zone. Let N and I be the two co-dominant alleles of a locus
that can result in three genotypes: NN native, II invading
and IN hybrid. We derive the following system of ODEs
for the native (NN), hybrid (NI) and invading genotype

(II ) with respective densities nN, nH and nI (extending
Eq. 4):

n′
i (t)

︸︷︷︸

rate of change

=
∑

j

Ajnj (t)P (i|j, j)

︸ ︷︷ ︸

self-fertilization

+
∑

j,k

Bjknj (t)nk(t)

1 + nj (t) + nj (t)nk(t)
P (i|j, k)

︸ ︷︷ ︸

outcrossing

− ni(t)(1 +
∑

j

nj (t))

︸ ︷︷ ︸

death

, (7)

where i ∈ {I,H,N}, A = (A)j=I,H,N is a 3 × 1 vec-
tor, B = (Bjk)j,k=I,H,N is a 3 × 3 symmetric matrix and
P(i|j, k) is the probability of producing an offspring with
genotype i from a cross between parents j and k. The
first term in Eq. 7,

∑

j Ajnj (t)P (i|j, j), represents the
reproduction from selfing, where the product Ajnj (t) indi-
cates the birth rate through selfing for genotype j , while
P(i|j, j) is the probability of the selfed parent j produc-
ing offspring of genotype i. The second term in Eq. 7,

Bjknj (t)nk(t)

1+nj (t)+nj (t)nk(t)
, indicates the growth rate through out-

crossing between pollen from genotype j and ovules from
genotype k, which can result in genotype i with the proba-
bility given by P(i|j, k). The last term in Eq. 7 stands for
the death rate, which depends on the size of the combined
population consisted of the three genotypes. Following a
Mendelian genetic model for a biallelic locus, the probabili-
ties for three offspring genotypes given the genotype of their
parents are the following:

P(I |·, ·) = PI =
I H N

⎛

⎝

1 1/2 0
1/2 1/4 0
0 0 0

⎞

⎠

I

H

N

(8)

P(H |·, ·) = PH =
I H N

⎛

⎝

0 1/2 1
1/2 1/2 1/2
1 1/2 0

⎞

⎠

I

H

N

(9)

P(N |·, ·) = PN =
I H N

⎛

⎝

0 0 0
0 1/4 1/2
0 1/2 1

⎞

⎠

I

H

N

(10)

Matrix PI contains probability values for the production
of offspring of the invading genotype, II , from all nine pos-
sible crosses between the three genotypes. PH includes the
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probabilities for offspring with the hybrid genotype while
those for the native offspring are given in the matrix PN .

Using Eq. 7, we investigated the effect of hybridization
when a new genotype invades an equilibrium population
of the native genotype and can hybridize with the native
genotype as compared with the scenario where there is no
native genotype in the habitat (4). Biologically, it is real-
istic to assume that the native genotype is at equilibrium
at the time of the introduction (this is also mathematically
demonstrated in the “Model of a single invading species”
section. Thus, as a first step, we studied the dynamics of
the hybrid and invading genotypes at the time of the intro-
duction to understand whether the invading genotype can
establish in the environment. For this first step, we assumed
that the native genotype is at equilibrium, i.e nN(t) = n̄N

for all t ≥ 0, and focused on the dynamics of invading nI

and hybrid nH genotypes, as a function of A and B param-
eters and their respective P(I ; ·, ·) and P(H ; ·, ·) matrices,
which can be described by the following:

n′
I =

I×I
︷ ︸︸ ︷

[

nI

(

AI + BII nI

1 + nI + n2
I

− (1 + n̄N + nI )

)]

+

I×H
︷ ︸︸ ︷

[

nI nH

(

BIH

2(1 + nI + nI nH )
+ BHI

2(1 + nH + nI nH )
−1

)]

+

H×H
︷ ︸︸ ︷

[

nH

(

AH

4
+ BHH nH

4(1 + nH + n2
H )

)]

(11)

n′
H =

H×H
︷ ︸︸ ︷

[

nH

(

AH

2
+ BHH nH

2(1 + nH + n2
H )

− (1 + n̄N + nH )

)]

+

H×N
︷ ︸︸ ︷

[

nH

(

BHNn̄N

2(1 + nH + nH n̄N )
+ BNH n̄N

2(1 + n̄N + n̄NnH )

)]

+

H×I
︷ ︸︸ ︷

[

nH nI

(

BHI

2(1 + nH + nI nH )
+ BIH

2(1 + nI + nH nI )
−1

)]

+

I×N
︷ ︸︸ ︷

[

nI

(

BNI n̄N

1 + n̄N + n̄NnI

+ BIN n̄N

1 + nI + nI n̄N

)]

. (12)

Note that we have dropped the t from our notation but it
should be clear that nI and nH are functions of t and that
nN ≡ n̄N is a constant. In Eq. 11, the first term on the
right, denoted by I × I , indicates the generation of geno-
type I by I ×I crosses either through selfing or outcrossing.
The second term of the right-hand side in Eq. 11, denoted
by I × H , groups all the intercrossings that can result in
offspring genotype I , either the invading genotype acting

as the male, i.e. pollen donor, (IH) or as the female, i.e.
pollen receiver, (HI) partner. As shown in P(I ; ·, ·), one
fourth of the offspring produced by a cross between two
hybrids (either a selfing hybrid or outcrossing between two
hybrid plants) will have the identity of the invading geno-
type: this is reflected in the third term of Eq. 11. The same
interpretation applies to the four terms in Eq. 12.

For this two-dimensional system of ODEs, we have nine
parameters, including the coefficients related to seed pro-
duction through selfing (AI and AH ) and the coefficients
related to outcrossing: BIH , BHI , BII , BHH , BIN ; BNI

and BHN . We assumed that the matrix B is symmetric, i.e
BIH = BHI and BIN = BNI . We also assumed that

AI=AH =AN=A∈R
+, BII =BHH =BNN =B ∈R

+, (13)

meaning that the three genotypes have the same selfing rate
as well as the same within-genotype outcrossing rate, so that
the three genotypes do not differ in fitness characters (this
equality in these fitness characters is necessary to be able to
extract the pure effect of hybridization).

In this section, we first derived the model of a single
invading genotype on the basis of plant-pollinator kinet-
ics (4). Then, in the framework of interacting species, we
incorporated hybridization and developed a system of three
ODEs, to model the rate of changes in the populations with
invading, hybrid and native genotypes (7). From this last
model, we also derived a sub-model (11–12) that describes
the dynamics of invading and hybrid genotypes only, while
the native population is assumed to stay at equilibrium,
in order to understand the dynamics of the system at the
time of the introduction. We also included in Appendix B
the derivation and the analysis of a model considering two
non-hybridizing species.

As shown in Eq. 11, the death rate of the invading geno-
type (as well as other genotypes) increases in the presence of
the other genotypes; however, the occurrence of hybridiza-
tion when another genotype is present will provide an
additional means for generation of the invader genotype, i.e
increasing birth rate through fertile crossings such as H ×H

and I × H . Can this augmented birth rate brought about
by hybridization compensate for, or exceed, the increased
mortality and thus facilitate the invasion? We explore the
possibility of such an outcome as will be discussed in the
following analysis.

Analysis

Using the theory of dynamical systems and numerical simu-
lations, we analysed the properties of the models introduced
above to determine whether interspecific pollen transfer can
help the establishment of the invading genotype.
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Fig. 1 A qualitative bifurcation diagram for Eq. 4 as related to
changes in parameter values of A (representing selfing rate) and B

(representing outcrossing rate) (a), and respective growth curves for
different parameter values of A including 0 (solid black line, negative

growth), 0.7 (dashed line, strong Allee effect) and 1.3 (dotted line,
weak Allee effect), when B = 3 and A = 2.1, B = 0.8 (solid light
grey line, no Allee effect) (b)

Model of a single invading species

The dynamics modelled by Eq. 4 represents the invasion
of habitat by a single species in absence of any competi-
tors. The long term behaviour of n (i.e. population size
of the invader) depends on the shape of F which can be
a logistic function or can include Allee effects (weak or
strong), depending on the values of A and B (see Figs. 1
and 2). Indeed, analysis of the function F , detailed in
Appendix C.1, provided information on the number of
positive roots along with the sign of F . From these dif-
ferent analyses, we reached conclusion about the existence
of non-negative equilibria of Eq. 4 and on their stability
properties.

Four different outcomes can be deduced from the func-
tion F as related to the values of the parameters A and B.
When A < 1 (i.e. the chance of seed production through

selfing is low), the outcrossing rate B is a bifurcation
between no growth or a strong Allee effect with an Allee
threshold. An Allee threshold exists when the density of
population must be above a positive value to gain a posi-
tive growth: this positive value is then defined as the Allee
threshold. When selfing provides some degree of repro-
ductive assurance, i.e. A > 1, then outcrossing rate, B,
determines if the population can grow without the chal-
lenges of an Allee effect or subjected to a weak Allee
effect.

Model of two hybridizing genotypes

Now, we consider the model with hybridization between the
invading and native genotypes. We first analyse the model
assuming that the native population stays constant (at equi-
librium), that is nN(t) = n̄N for all t ≥ 0. Then we study the

0 1 2
0

1

2

3

(a)

0 1 2
0

1

2

3

(b)

0 1 2
0

1

2

3
(c)

Fig. 2 Equilibria of Eq. 4 n∗ ≥ 0 as a function of A for three B values of 0.5 (a), 3 (b) and 6 (c). Solid and dotted lines represent the stable and
unstable equilibria, respectively
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behaviour of the full system taking into account the dynam-
ics of the three populations: native (nN ), invading (nI ) and
hybrid (nH ), through numerical simulations.

Analytical solution

We analysed the impact of hybridization in a system of
two interacting genotypes, using model (11)–(12), which
describes changes in the invading and hybrid genotype
populations, assuming that the native genotype stays at
equilibrium.

We computed the equilibrium value n̄N using the model
of a single invading genotype described in the previous
section. That is we used Eq. 4 to compute the non-trivial
equilibrium n∗

N and set n̄N = n∗
N . We chose to investi-

gate the stability of the (0, 0) equilibrium of Eqs. 11–12 (i.e
when nI = 0 and nh = 0), as this analysis reflects the sit-
uation wherein the invading genotype occurs at low density
and thus is prone to Allee effects. Further, a low propagule
pressure is known to be very common in most introductions
(Simberloff 2009). We therefore choose values of parameter
A such that F in Eq. 4 is either always negative or bistable,
i.e. exhibits strong Allee effect:

A < 1 (14)

In other words, we analysed a situation under which the
trivial steady state 0 is a stable equilibrium for the single
genotype model (4). If our analysis shows that this sta-
ble equilibrium can become unstable in the presence of
hybridization, we can conclude that neutral hybridization
has facilitated the invasion as the invader has been able to
escape from a stable zero growth state to a positive growth
state, even if this period of growth is very brief.

The stability properties of (0, 0) can therefore provide
some insights into the potential rescue effects of hybridiza-
tion, i.e. whether hybridization can reduce the risk of extinc-
tion or Allee effect in the invading genotype. Indeed, the
linear stability of an equilibrium point provides informa-
tion on the behaviour of the non-linear system, at least

in the vicinity of the equilibrium point (Edelstein-Keshet
1988, chapter 4), which could be determined by the sign
of the eigenvalues of the Jacobian matrix at the equilibrium
point (Edelstein-Keshet 1988, chapters 5–6). The stability
properties of (0, 0) can be inferred from the sign of the
trace and the determinant of the Jacobian of the system at
(0, 0), denoted by J 0. The trivial equilibrium is stable if
tr(J 0) < 0 and det (J 0) > 0. The trivial equilibrium is
unstable if (det (J 0) > 0 and tr(J 0) > 0) or (det (J 0) < 0
only). A detailed analysis of the Jacobian at (0, 0) is pro-
vided in Appendix D.1. From this analysis, we note that the
trace and the determinant of the Jacobian at (0, 0) (39) only
depend on BIN (a measure of intercrossing rate between the
two parental genotypes) and BHN (a measure of intercross-
ing rate between the hybrid and the native genotype), given
that AH = AI = A were chosen to be fixed. Our goal
is to determine the parameter space under which either the
trace and the determinant are positive (and (0, 0) will then
be an unstable node) or the determinant is negative (and
(0, 0) will be an unstable saddle): if any of these conditions
(tr(J 0), det (J 0) > 0 or det (J 0) < 0) are met, the trivial
equilibrium (0, 0) will become unstable, suggesting a rescue
effect for hybridization

When hybridization was allowed, the trivial equilibrium
(0, 0) was either a stable node (det (J 0) > 0 and tr(J 0) <

0) or an unstable saddle (det (J 0) < 0) (Appendix D.1). The
trivial equilibrium (0, 0) is unstable and thus facilitation is
warranted, if and only if the determinant becomes negative,
i.e when BIN and BHN are such that

BIN >
4(1 + n̄N )(A − (1 + n̄N ))

An̄N(2 + n̄N )

[

A

2
− (1 + n̄N )

+ n̄N (2 + n̄N )

2(1 + n̄N )
BHN

]

. (15)

An illustration of the stability property of the trivial steady
state as a function of BIN and BHN is shown in Fig. 3.
One needs to compute the eigenvectors associated with the

Fig. 3 Stability of the trivial
steady state (0, 0) as a function
of the parameters BHN (a
measure of intercrossing rate
between hybrid and native
genotypes) and BIN (a measure
of intercrossing rate between
invading and native genotypes)
for Eqs. 11 and 12
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two real eigenvalues of the Jacobian at (0, 0), to better
understand the behaviour of the solution near the trivial
equilibrium (Edelstein-Keshet 1988, chapter 5.7). That is,
by introducing a few individuals of the invading genotype
(hybrid genotype density is zero in the first generation) and
calculating the eigenvector of the trivial steady state (0, 0),
we can determine the direction along which the solutions
are converging to or diverging from (0, 0).

To understand the bifurcation of the trivial equilibrium
from a stable node to an unstable saddle, we computed and
analysed the null clines of problems (11)–(12), i.e the points
(nI , nH ) in the phase plane (nI , nH ) such that n′

I ≡ 0 and
n′

H ≡ 0 (Appendix D.2).
Two general conclusions can be made based on the sta-

bility statues of the (0, 0) equilibrium. If (0, 0) is stable
(i.e det (J 0) > 0) , there exist either no or two non-trivial
equilibrium points, including n1 = (n1

I , n
1
H ) and n2 =

(n2
I , n

2
H ). If (0, 0) is unstable, there exists only one non-

trivial equilibrium point n2, which is always stable (see also
Appendix D.3).

Our general conclusion from this analysis is that the pol-
lination quality improvement due to hybridization can facil-
itate the establishment of the invading genotype either by
reducing the Allee threshold or removing it (Appendix D.1).
Hybridization reduces the Allee threshold when there are
two non-trivial equilibria n2, which is stable, and n1, which
approaches (0, 0) with increasing BIN and/or BNH , and
removes the strong Allee effect by making the trivial equi-
librium (0, 0) unstable (Appendix D.2 and D.3). From this
analysis, we can conclude that the parameters that affects
the existence of an Allee threshold and thus a strong Allee

effect are only the interspecific crossing rate between native
and invading genotypes BIN and the one between hybrid
and native genotypes BHN .

Numerical simulations

So far, we have assumed that the density of nN is at equi-
librium and does not change over time. The equilibrium
assumption is biologically realistic, but that the native pop-
ulation remains constant even after the invasion by a second
species may not represent a likely scenario in the real world.
This assumption can make the appropriateness of non-trivial
equilibrium analysis questionable. Therefore, a more real-
istic analysis of the time evolution of the three genotypes
was performed numerically by relaxing the assumption of a
constant nN . As before, we maintained the assumption that
the native genotype is at equilibrium at the time the new
genotype arrives, but the new model allows the density of
the native genotype to change with time. This model also
allows for hybridization between the invading and native
genotypes.

As before, we assumed that the three genotypes have the
same phenotypic values with regard to A (selfing rate) and
B (within-genotype outcrossing rate) parameters: AN =
AI = AH = A and BNN = BII = BHH = B. When A

and B were chosen so that the trivial equilibrium was sta-
ble in the single species model (Fig. 1) and thus the species
could not invade the environment (Fig. 4 – thick solid line),
neutral hybridization with the native genotype allowed suc-
cessful establishment of invader under the same parameter
settings as with single species scenario (Fig. 4a when the nN
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Fig. 4 Temporal changes in the density (n) of the invading geno-
type when it occurs alone (bold solid line) compared to the situation
where it can intercross (solid line) with the native genotype (dot-
ted line) to form hybrids (dashed line) when the native population
is assumed to stay constant (model (11)–(12)) (a) or considering
the full model (b). The outcrossing rates were fixed at BIH = 2,

BIN = 2 and BHN = 1.2. For the hybridizing scenario, the den-
sity of the native was either held constant (nN ≡ 0.8) (a) or starting
at equilibrium (nN(0) = 0.8) (b) while no hybrid existed in the first
generation (nH (0) = 0) and the density of the invading genotype, at
t = 0, was 10 % of the native. Other parameters were A = 0.8 and
B = 3
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Fig. 5 Temporal changes in the density of the invading genotype for
different BIN values including 1 (solid black line), 2 (solid grey line)
and 3 (solid light grey line) with BIH = 2 and BHN = 1.2. The den-
sity of the native was at equilibrium at the beginning of the simulation
(nN(0) = 0.8), no hybrid existed in the first generation (nH (0) = 0)
and the density of the invading genotype was 10 % of the native. Other
parameters were A = 0.8 and B = 3

is assumed to be constant, Fig. 4b for the full hybridizing
model). Moreover, as shown with the analysis of the sim-
plified hybridizing model, the growth rate of the invading

genotype became positive when the reproduction barriers
between the native and invading genotypes became weaker
(i.e. larger BIN ) (Fig. 5). Notice that when the native pop-
ulation was assumed to stay constant over time, the hybrid
population outnumbered the invading genotype (Fig. 4a),
whereas the invading genotype became the dominant geno-
type when the full model, which allows for changes in
population of native, was considered (Fig. 4b). Thus, the
analysis of the simplified hybridizing genotype (holding nN

constant over time) is useful for interrogating the effects of
parameters on the establishment of the invading genotype,
but the full hybridizing model is necessary to understand
the equilibrium frequencies of native, hybrid and invading
genotypes.

We also studied the dynamics of the three genotypes as
a function of BHN or BIH , representing the degree of sym-
metry in the direction of backcrossing between the hybrid
and parents, and for different values of BIN , represent-
ing the rate of hybridization (Fig. 6). When BIN and BHN

were small, the invader will go extinct whatever the val-
ues of BIH (Fig. 6a). The invader can establish and become
dominant only if BIH is large, implying a large asym-
metry in introgression where hybrids backcross with the
invading genotype more than the native genotype (Fig. 6b).
The increase in BNH also allows the invader to establish

Fig. 6 Relative density of native
(N), invading (I ) and hybrid (H )
genotypes after 100 generations,
as a function of BIH (top panel)
and BNH (bottom panel) for
three different hybridization
rates, BIN , of 1 (a and d), 2 (b
and e) and 3 (c and f).
Interbreeding parameters Bij

(i �= j ) were fixed at 1.5 if not
used as an independent variable
(i.e BHN = 1.5 for the top panel
and BIH = 1.5 for the bottom
panel). The density of native
was at equilibrium at the
beginning of the simulation
(nN(0) = 0.8) while that of the
invading genotype was 1 % of
the native. No hybrid existed in
the first generation (nH (0) = 0).
Other parameters were A = 0.8
and B = 3
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(Figs. 3 and 6) but only to a limited extent: beyond a spe-
cific threshold, increasing BNH will reduce the frequency of
the invader in the population while that of the native geno-
type is increasing (Fig. 6c, d). However, when BIN is large
(Fig. 6b, d), the effect of asymmetric backcrossing is less
profound.

Discussion

Our kinetic model highlighted the possibility for a qualita-
tive facilitation of pollination in a system of two interacting
species that share pollinator services and can hybridize.
Hybridization improvement of the pollination quality not
only allowed the invading genotype to avoid extinction but
also enabled it to maintain a positive growth and even
become dominant in the mixed population (e.g. Fig. 6b).
In this study, we only investigated the potential role of
hybridization in improving the quality of pollination while
keeping the pollination quantity constant: this allowed us to
underpin the pure facilitative effect of hybridization com-
pared to our previous study that included the positive effect
of a co-flowering species on a visitation rate too (Mesgaran
et al. 2016). We achieved a constant pollination quantity
by assuming that the density of pollinators, e0, is a fixed
parameter and independent of the population size so the vis-
itation rate in the invading genotype (and other genotypes if
they exist) is not affected by the density of population (see
Eq. 26). Our model suggests that hybridization as a process
that exploits interspecific pollen transfer, IPT, can be suf-
ficient to drive a facilitative effect with no requirement for
additional benefits of increased visitation rate that can be
provided by a co-flowering species.

When hybridization is possible, the native genotype
interacts with the invading genotype both negatively and
positively. On the one hand, the individuals of the native
genotype compete with the invading genotype and reduce
its survival rate through density-dependent regulation. On
the other hand, the native individuals act as potential mates
for the invading genotypes, thus alleviating the problem of
pollen limitation. The net outcome of these two processes
will be positive, leading to facilitation, when the interbreed-
ing rates (designated as Bij in our model) are high. A high
interbreeding rate reduces fertilization failure (caused by
heterospecific pollen-ovule encounter) and thus results in a
birth rate that exceeds the mortality.

This conclusion was derived by observing that hybridiza-
tion made the stable trivial equilibrium in the single species
model unstable with the solution diverging from (0, 0).
More specifically, a large value of interbreeding parame-
ter BIN or BNH resulted in an unstable trivial equilibrium
(Fig. 3) suggesting the possibility for growth from the same
low densities. A stable trivial equilibrium, however, implies

that the invading genotype will always go extinct if it is
introduced at low densities. It might seem unexpected that
the backcrossing rate between the native and hybrid geno-
types, BNH , was found to be more important than BIH

(backcrossing rate between the invader and hybrid) for alle-
viation of a strong Allee effect in the invader given that
the latter crossing can produce more homozygous invad-
ing genotypes (i.e. II ) than the former one. Since both the
invader and the hybrid occur at very low densities at the time
of introduction, they need to interact (cross) with the native
population, which already has a high density, to be able to
establish. The increase in intercrossing between the invader
and hybrid, i.e. BIH , will not be effective in removing the
strong Allee effect as they both have densities close to the
trivial equilibrium in the beginning of invasion.

The heterospecific mating rate in sympatric zone depends
on a variety of pre- and post-pollination factors such as
the temporal distribution of flowering, pollinator behaviour
and compatibility of pollen-stigma or pollen-ovule complex
(Campbell and Aldridge 2006). The first requirement for
interspecific mating is an overlap in flowering timing of the
co-occurring species. However, ethological isolation caused
by preference and constancy of pollinators may still prevent
pollen transfer between co-flowering species (e.g. Esfeld
et al. 2009, Schemske and Bradshaw 1999). Even after the
successful deposition of heterospecific pollen on the stigma,
the pollen may fail to germinate or grow down the style
(e.g. Lee et al. 2008) or may be outcompeted by the con-
specific pollen (Carney et al. 1996). The above mechanisms
not only affect the likelihood and rate of interbreeding but
can also cause a bias in the direction of crossing and intro-
gression (e.g. Aldridge and Campbell 2006). Our previous
model showed that bias in the direction of hybridization
(introgression) can have important demographic and genetic
consequences (Mesgaran et al. 2016). In this study, we also
found a similar effect from an asymmetric introgression.
As predicted by our kinetic model, increasing the cross-
ing rate between the hybrid and invading genotype (BIH )
increased the growth rate of the invading genotype which
ultimately resulted in a population structure that mainly
consisted of the invading genotype (Fig. 6b). This can be
explained by the Mendelian genetic model: every time that
a hybrid crosses with the invader, 50 % of the resultant
offspring will have the identity of the invading genotype
II . However, this synergic effect of asymmetric backcross-
ing can only exist if the interbreeding rate between the
parental genotypes (BIN ) is already high enough to allow
the establishment of the invader: when it is low there is
no chance for the invader to escape the Allee effect as
shown in Fig. 6a. At the genome scale (with no assumption
about the number of loci), the amount of genetic mate-
rial from the native species is halved in the progeny with
each successive backcross generation while that from the
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invading genotype increases following (2b − 1/2)/2b with
b indicating the backcross generation. It therefore takes
only six backcross generations to produce an individual in
which >99 % of its genome descends from the invading
species. In this study, we included only three genotypes in
the model assuming a simple Mendelian genetic inheritance.
Huxel (1999) used the same single locus, two-allele genetic
model but with no account of population demography. Wolf
et al. (2001) also used three genotype classes but incorpo-
rated various ecological parameters. However, their model
included no explicit genetic component with hybrids act-
ing as an absorbing class, i.e. any cross between parents
and hybrid results in hybrid offspring. This assumption may
artificially inflate the hybrid class. It is unlikely that our
qualitative results be affected by the choice of the number
of genotype classes (locus) or the model of inheritance. An
alternative approach is to consider genotype as a continuous
variable as was implemented in the hybridization model of
Hall et al. (2006) and Mesgaran et al. (2016).

A variety of models have been developed to explore the
genetic consequences of hybridization, usually by track-
ing the changes in the frequency of invasive alleles in a
fixed population size (e.g. Durrett et al. 2000, Hu 2005, and
Huxel 1999 also see the review by Hall and Ayres 2008).
Only very few hybridization models, however, have com-
bined genetics processes with ecological or demographical
parameters. Previous models of hybridization have mainly
focused on the extinction risks of native species by hybrids
(e.g. Epifanio and Philipp 2000; Hall et al. 2006; Wolf et al.
2001). None of these models included Allee effects. Allee
effects have been incorporated into many population mod-
els of invasions but the majority are single species models
(e.g. Kanarek 2012, Kot et al. 1996, and Lewis and Kareiva
1993 also see the review by Boukal and Berec 2002). Using
the theory of kinetic reactions, we were able to integrate
these two seemingly unrelated biological phenomena, i.e.
hybridization and Allee dynamics, into a population dynam-
ics model. The advantage of this modelling approach is that
many well-established mathematical techniques and theo-
ries (e.g. see Appendix D) can be used to address complex
biological questions such as those raised in this study.

The selection of the trivial equilibrium as the basis of
our analysis was both for mathematical and biological rea-
sons. First, the use of a trivial point makes the model more
tractable and amenable to mathematical techniques that
biologists are familiar with, e.g. Jacobian linearization com-
monly used in stability analysis (Edelstein-Keshet 1988).
Other equilibria, if they could be solved, were rather com-
plex and difficult to analyse. Second, perturbation about the
trivial equilibrium simulates the dynamics of a small found-
ing population, which is a common phenomenon in many
systems including biological invasions (Taylor and Hastings
2005; Elam et al. 2007; Simberloff 2009). This assumption

about having a small founding population also validates the
mass-action approach used in our modelling process, where
the production of seeds is proportional to the abundance
(concentration) of reactants (pollen and ovule) and agent
(pollinator). We expect the outcome to be different if we
include pollinator satiation or pollen saturation, especially
if the saturation threshold stands below the Allee threshold.

While “invasion pinning” (sensu Keitt et al. 2001) from
an Allee effect has been suggested as a potential means
for managing biological invasions (Tobin et al. 2011),
hybridization exploitation of IPT illustrates another mecha-
nism by which an invader can overcome Allee effects and
initiate a successful invasion. Hybridization is a growing
concern as it can result in genomic swamping of natives
by invasive species (Rhymer and Simberloff 1996), and our
model shows that with hybridization, the “pure” invader
rather than its hybrid lineages (Epifanio and Philipp 2000;
Hall et al. 2006; Wolf et al. 2001) can cause rapid decline
in the population of native species, while without hybridiza-
tion, the invader might have gone extinct during the early
phases of invasion. Conservation programmes should there-
fore account for this cryptic role that hybridization may play
in invasions.

The interaction between dispersal and hybridization can
provide useful insights as to how hybridization can affect
the rate of spread, in addition to establishment, in invad-
ing populations. Therefore, the incorporation of a spatial
component could form the basis of future work.
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Appendix A: Derivation of the models

In this section, we use a quasi-steady state approximation
followed by rescaling of the dependent and independent
variables to obtain a dimensionless ordinary differential
equation that describes the rate of change in seed number
as a function of pollen and ovule density; the dynamics are
defined by Eqs. 1, 2 and 3.

A.1 Kinetic reaction theory and quasi-steady-state
approximation

The time-evolution of N can be obtained through a quasi-
steady-state approximation as described in Keener and
Sneyd (2009) and Murray (2002). Let s1 = [S1], s2 =
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[S2], e = [E], c1 = [C1], c2 = [C2], n = [N] be the
abundance of pollen, ovules, pollinator without pollen, pol-
linators with pollen, pollinator with pollen on ovules and
seeds, respectively. We derive, from the kinetic reaction (1),
(2) and (3), the following system of ODEs:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ds1
dt

= −k1s1e,
ds2
dt

= −k0s2 − k3c1s2 + (1 − ν)k4c2,
de
dt

= −k1s1e + k2c1,
dc1
dt

= k1s1e − k2c1 − k3c1s2 + k4c2,
dc2
dt

= k3c1s2 − k4c2,
dn
dt

= k0s2 + νk4c2.

(16)

Note that

– n will be known once c2 and s2 are known and it does
not affect the dynamics of the other variables in the
system so the equation can be removed from the system,

–
de

dt
+ dc1

dt
+ dc2

dt
= 0 thus e+c1 +c2 = e(0)+c1(0)+

c2(0) = e0 and e can be deduced from c1 and c2, so
we can remove e from the system by replacing it with
e0 − c1 − c2. Rewriting the equations for s1, s2, c1 and
c2, we obtain the following new system

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

ds1
dt

= −k1s1e0 + k1s1c1 + k1s1c2,
ds2
dt

= −k0s2 − k3c1s2 + (1 − ν)k4c2,
dc1
dt

=k1s1e0 − k1s1c1 − k1s1c2 − k2c1 − k3c1s2 + k4c2,
dc2
dt

= k3s2c1 − k4c2.

(17)

The quasi-steady state approximation assumes that the
rate of formation and breakdown of complexes are essen-
tially equal at all times, that is dc1/dt = 0 and
dc2/dt = 0. This approximation can be derived through
non-dimensionalization of the system, choosing for exam-
ple the following dimensionless variables:

τ = k1e0t, u1 = s1

s0
, u2 = s2

s0
, v1 = c1

e0
, v2 = c2

e0
,

where e0 and s0 are the initial number of enzyme (pollinator)
and substrate (pollen and ovule), respectively.

Now, writing the equations based on the scaled variables,
one gets:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

du1
dτ

= −u1 + u1v1 + u1v2,
du2
dτ

= − k0
k1e0

u2 − k3
k1

v1u2 + (1 − ν)
k4

k1s0
v2,

ε
dv1
dτ

= u1 − u1v1 − u1v2 − k2
k1s0

v1 − k3
k1

v1u2 + k4
k1s0

v2,

ε
dv2
dτ

= k3
k1

v1u2 − k4
k1s0

v2,

(18)

with ε = e0
s0

.
Notice that in our framework ε << 1 as that there

is much more pollen and ovule (substrate) than pollinator
(enzyme) in the beginning.

Thus, letting ε → 0 while considering the last two
equations in Eq. 18, we have
{

0 = u1 − u1v1 − u1v2 − k2
k1s0

v1 − k3
k1

v1u2 + k4
k1s0

v2,

0 = k3
k1

v1u2 − k4
k1s0

v2.

which after solving for v1 and v2, we obtain the following:
⎧

⎨

⎩

v2 = k3s0
k4

v1u2,

v1 = u1

u1+ k3s0
k4

u1u2+ k2
k1s0

. (19)

Scaling back to the initial variables c1 and c2, Eqs. 19 can
be written
⎧

⎨

⎩

c1 = e0s1
k2
k1

+s1+ k3
k4

s1s2
,

c2 = k3
k4

c1s2.
(20)

Note that these two equations could have been obtained
directly by setting dc1/dt = 0 and dc2/dt = 0. Using the
last equation in (16):

dn

dt
= k0s2 + νk4c2.

and after some substitutions and simplifications, we obtain
the following ODE that describes the dynamics of seed pro-
duction n as related to the density of pollen, s1, and ovules,
s2:

dn

dt
= k0s2 + Vmaxs1s2

Q1Q2 + Q2s1 + s1s2
, (21)

where

Vmax = νe0k4, Q1 = k2

k1
, Q2 = k4

k3
.

We also obtained equations for the temporal dynamics of s1

and s2 but our focus here is on the role of the ovules and
pollen on the production of seeds and not the dynamics of
these reactants per se.

The above Eq. 21 models the birth rate of seeds only: to
account for death of individuals, we incorporated a density-
dependent mortality component as follows:

dn

dt
= k0s2 + Vmaxs1s2

Q1Q2 + Q2s1 + s1s2
− d1n − d2n

2, (22)

with d1 and d2 being the density-independent and the
density-dependent death rates, respectively (Harper and
McNaughton 1962).

This last Eq. 22 describes the rate of change in n, the
density of seeds, as a function of n itself but also that of
the pollen and ovule densities. The first term in the right
hand side of the Eq. 22 represents reproduction through
self-fertilization, whereas the second term indicates seed
production via outcrossing. The last term on the right-hand
side of Eq. 22 accounts for death that can happen at any
stage of the plant’s life cycle over the whole growing sea-
son. Note that Eq. 22 models changes in plant density over
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time as a single stage, so that from a mathematical perspec-
tive, n can be envisioned both as a seed in the seedbank or as
a mature plant above the ground. That is, the rate of change
in n is simply the result of the difference between birth and
death rates. This simplification is reasonable as our model is
based on the life cycle of an annual plant with no persistent
seedbank and thus with no overlap between generations. We
can therefore further simplify the model by assuming that
the other two dynamic variables, i.e. s1 and s2 in Eq. 22, are
proportional to n (this results in the final model (4) as will
be discussed later).

A.2 Non-dimensionalization

To reduce the number of free parameters in the system, we
scaled the variables and reduced the model to a dimension-
less problem (Buckingham 1914; Segel 1972) by strategi-
cally choosing

t∗ = td1, n∗ = d2

d1
n, s∗

1 = c1
s

k1

k2
s1, s∗

2 = c2
s

k3

k4
s2,

where c
1,2
s are positive constants that will be determined

later. Equation 22, after substituting the scaled variables,
becomes the following:

dn∗

dt∗
= d2k0k4

d2
1c2

s k3
s∗

2 +ν
k4e0d2

d2
1

s∗
1 s∗

2

c1
s c

2
s +c2

s s
∗
1 +s∗

1 s∗
2

−n∗(1+n∗).

(23)

For simplicity, we drop the ∗, but hereafter the variable n,
s1, s2 and t refer to the non-dimensionalized version of the
same variables. We obtain the non-dimensional version of
Eq. 22:

dn

dt
= A

s2

c2
s

+ B
s1s2

c1
s c

2
s + c2

s s1 + s1s2
− n − n2, (24)

where

A = d2k0k4

d2
1k3

, (25)

and

B = νk4e0d2

d2
1

. (26)

The ratio d2/d1 represents the relative contributions of
density- and non-density-related factors to mortality, which
are not easy to separate and can vary depending on the habi-
tat type and species (Harper 1977). In disturbance-prone
habitats such as coastal systems, for example, mortality is
mainly due to erosion and is less affected by the density of
plants (e.g. Keddy 1981). However, in tropical habitats and
forests, where competition could become intensive, den-
sity can be a driving force of mortality (e.g. Lambers et al.
2002). Here, we assumed that mortality is mainly caused by

density-independent regulators (as in Watkinson and Harper
1978; Keddy 1981; Watkinson et al. 1989), though the
opposed scenario can also be used without the loss of the
generality of results. In the annual species Vulpia fasciculata
plant, for example, mortality due to density-independent
factors ranged from 7 to 40 % in the study of Watkinson
and Harper (1978). Similarly, fire, as a density-independent
factor, killed ∼40 % of flowering Sorghum intrans plants
(Watkinson et al. 1989).

If we assume 30 % of plants die due to factors unrelated
to the density while competition, i.e. density-dependent pro-
cesses between plants, accounts for 9 % death over the
growing season of 100 days, we will obtain a d2/d

2
1 = 100

day per unit density. We also assume that pollen deposi-
tion and the breakdown of the complex C2 happen at the
same rate, so that k3 = k4. This gives k3/k4 = 1 per
unit density. The selection of these values is somewhat arbi-
trary and for mathematical convenience, e.g. parameter A,
which is dimensionless, is now reduced to A = k0 × 100
day where 100 is the length of growing season assumed
for an annual plant: a longer or shorter growing period will
not qualitatively affect the results. Parameter A now rep-
resents the selfing rate (k0) over the season. Nevertheless,
the above mortality values are still realistic and fall within
the range of reported values. Using the above argument, one
also obtains that B = ν · k4 · e0 · 100 day · m2. The param-
eter e0 represents the density of pollinators at the time of
the introduction and was assumed to be 1 m−2, which lies
within the range of pollinator abundance in several surveys
(e.g. Grixti and Packer 2006; Janovsky et al. 2013; Moreira
et al. 2015; Westphal et al. 2008). The density of polli-
nators, e0, can change (positively) with the plant density
(Kunin 1993), but as we are mainly interested in the poten-
tial effect of hybridization on the quality of pollination, we
assumed that this parameter is constant and independent of
plant density. Now, the dimensionless parameter B becomes
B = ν · k4 · 100 day,which represents the fertile outcrossing
rate as function of cross pollination rate, k4, and fertilization
success rate, ν, in a growing season.

Equation 24 is thus a dimensionless equation that
describes the rate of change in n as a function of A and B,
representing the selfing and outcrossing rates over the sea-
son, respectively. This equation was then used to derive two
different models: a model with a single invading species and
the other with two hybridizing species.

Equation 22 and its dimensionless version Eq. 24
describe the multiple temporal processes within the life
cycle of a plant simultaneously as a single phenomenon
where n can be any expression of a plant’s developmental
stages from seed to seedling to mature plant. We assume
that, on average, the ovule density and pollen load den-
sity are proportional to the plant density, which, in turn,
is proportional to the matured seed density. We choose the



Theor Ecol

constants of proportionality to be the undetermined con-
stants from the non-dimensionlization, c1

s and c2
s , so that

s1 = c1
s n and s2 = c2

s n.

Appendix B: Model of two non-hybridizing
genotypes: competition model

B.1 The model

In this section, we expand our single species model (4) to
a system of two competing genotypes (species), namely the
native (resident) genotype, denoted by N , and a new incom-
ing (invading) genotype, denoted by I . The two genotypes
interact with each other through density-dependent regula-
tion, e.g. death rate is a function of the total population size
N +I , but they do not intercross, i.e no hybridization occurs
between them. The two genotypes are assumed to vary in
their selfing, parameter A, and outcrossing, parameter B,
rates. Extending the Eq. 4 to include two genotypes results
in the system of two ODEs:
{

n′
I (t) = nI (AI + BI

nI

1+nI +n2
I

− (1 + nI + nN))

n′
N(t)=nN(AN + BN

nN

1+nN+n2
N

− (1 + nN + nI )),
(27)

where nI and nN denote the densities of invading and native
genotypes, respectively. From Eq. 27, it can be seen that the
existence of another genotype will always reduce the growth
of either genotype. Now, suppose that the native genotype
is at equilibrium (i.e. nN ≡ n̄N ) at the time the propagules
of the new genotype arrive at the location. As the density of
the native is kept constant, the dynamics of invading can be
studied through the following:

n′
I (t) = nI

(

AI + BI

nI

1 + nI + n2
I

− (1 + nI + n̄N )

)

= F̄ (nI ). (28)

As we assumed that the native genotype always remains
at equilibrium and that it cannot interbreed with the invad-
ing genotype, the differential model of the invader in the
presence of a resident species is similar to that of the
single invading genotype, with the only exception being
density-dependent mortality formulation.

B.2 Analysis of the model

Similar to the single species dynamics (Appendix C), bifur-
cation analysis of the above model gave rise to four out-
comes, contingent on the value of AI with respect to the
bifurcation point (1 + n̄N ) and the value of BI with respect
to 1 (Fig. 7). When AI > (1+ n̄N ), population grows either
with a weak Allee effect (if BI > 1) or with no Allee effect
(if BI < 1). In the case of AI < (1+ n̄N ), the invading pop-
ulation will have no growth and go extinct (if BI is small)
or experience strong Allee effects (if BI becomes large).

Appendix C: Analysis of the dynamics of invasion
in the single species model

C.1 Single species model

In this section, we derive the analysis performed on the
function F of Eq. 4, in order to characterize its shape and
the type of growth for n.

When A>1, using Descartes’ rule of sign (Appendix C.2
or in Pearson (1990), chapter 1), one can conclude that there
exists a unique positive root n∗ for F . Given that when n>0
is small, F(n) > 0 whereas F(n) → −∞ as n → +∞ we
obtain

F(n) > 0 if 0 < n < n∗ and F(n) < 0 if n > n∗.

Fig. 7 Bifurcation diagram (27)
depicting four dynamic
outcomes for the invading
genotype as related to
parameters A (representing
selfing rate) and B (representing
outcrossing rate). See the
“Analysis of the model” section
for more details
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We can conclude that for A > 1, the growth function F is
always positive and there exists a stable equilibrium n∗ > 0.
Moreover, the per capita growth rate

F(n)

n
= A − 1 − n + Bn

1 + n + n2

is maximal at 0 if and only if B ≤ 1. The model will thus
give rise to a weak Allee effect if and only if B > 1 (Fig. 1).

When A = 1, the model reduces to

F(n) = n2
(

B

1 + n + n2
− 1

)

, (29)

which is positive for some values of n > 0 if and only if
B > 1. In this case, there exists n∗

B > 0 such that

F(n) > 0, if 0 < n < n∗
B and F(n) < 0 if n > n∗

B.

Lastly, if we assume that A < 1, the use of Descartes’
rule of sign affirms the growth function is always negative
if B ≤ 2 − A. To investigate the model behaviour for sit-
uations where the population may grow, i.e. B > 2 − A,
we use Cardan’s method (Appendix C.3; also see Pearson
(1990), chapter 1). We found that the function F can either
be bistable or negative depending on the sign of the so-
called discriminant � (see Appendix C.3). Accordingly,
when � < 0, there exists two positive roots 0 < n∗

1 < n∗
2

such that

F(0) = F(n∗
1) = F(n∗

2) = 0,

F (n) < 0, if 0 < n < n∗
1 or n > n∗

2

and

F(n) > 0, if n∗
1 < n < n∗

2.

Whereas 0 and n∗
2 equilibria are stable, the n∗

1 equilibrium is
unstable. The function F is thus bistable when � < 0 and
there is a strong Allee effect. When � ≥ 0, F(n) ≤ 0 for
all n ≥ 0 and the only non-negative stable equilibrium is 0,
implying that there is no growth.

C.2 Descartes’ rule of sign

Descartes’ rule of sign is used to obtain an upper bound on
the number of positive roots of a polynomial (Pearson 1990,
chapter 1). That is, if the polynomial is ordered by descend-
ing variable exponent, then the number of sign changes
between consecutive non-zero coefficients is greater or
equal to the number of positive roots of the polynomials.
Moreover, if the number of positive roots is not equal to
the number of sign changes of non-zero consecutive coef-
ficient, then it is smaller than it by an even number. Let Z

denotes the number of sign changes of consecutive non-zero
coefficients and P the number of positive roots, then

P ≥ 0 and P = Z − 2k, for some k ∈ N.

This means for example that if Z is odd then there is at least
one positive root and if Z = 1, then we know that there is
exactly one positive root.

This rule can be extended to negative roots also by con-
sidering −x in the polynomial instead of x and again using
the above rule.

In our framework we write F as follows:

F(x)= x(−x3+(A − 2)x2+(A−2+B)+(A − 1))

1 + x + x2
. (30)

As the denominator in (30) is positive when x is non-
negative, using Descartes’ rule of signs for the third order
polynomial in the numerator, we found that if A > 1
then there is always only one sign change between the
coefficients and thus there is exactly one positive root x∗>0.

C.3 Cardan’s method

A brief description of Cardan’s method can be found in
Pearson (1990), chapter 1. Here, we provide more details on
the method. We are interested in solving the general cubic
equation, using Cardan’s method

x3 + ax2 + bx + c = 0. (31)

We first reduce this equation in a degenerate cubic equation
of the form

x3 + px + q = 0. (32)

This can be done by the following substitution:

x = t − a

3
.

Then Eq. 31 becomes

t3 + pt + q = 0, (33)

with p = (3b − a2)/3 and q = (2a2 − 9ab + 27c)/27.

– If p = q = 0, then the only solution is t = 0, which is
equivalent to x = −a/3,

– If q �= 0 and p = 0, then t = { 3
√−q, 3

√−q(− 1
2 −√

3 i
2 ), 3

√−q(− 1
2 + √

3 i
2 )}, and x = t − a/3,

– If p �= 0 and q = 0, then t = {0, −√−p,
√−p} and

x = t − a/3,
– If p �= 0 and q �= 0, then we introduce u and v such

that t = u − v. Given that

(u − v)3 + 3uv(u − v) − (u3 − v3) = 0 (34)
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we obtain p = 3uv and q = −(u3 − v3). Note that
u �= 0 and v �= 0. This implies that v = p

3u
and

u3 −
( p

3u

)3 + q = 0 ⇔ u6 + qu3 − p3

27
= 0,

thus, u3 solves a quadratic equation and

u3 = −q ± √
�

2
,

with � = q2 + 4p3/27. As v3 − u3 = q, it follows that

v3 = q ± √
�

2
.

Notice that as x = t − a/3 = u − v − a/3, the same
results would be obtain if we change +√

� to −√
�,

we can thus consider, without loss of generality, only
the case with +√

� and

u3 = −q + √
�

2
, v3 = q + √

�

2
.

Depending on the sign of �, now we can reach conclu-
sion about the nature of the roots x:

– If � = 0, then u = { 3
√

− q
2 , 3
√

− q
2 (− 1

2 −
i
√

3
2 ), 3

√

− q
2 (− 1

2 +i
√

3
2 )} and using the fact that

3uv = p ∈ R, we know that u and v must be
conjugate. Substituting for x, we get

x =
{

3

√

q

2
− a

3
, 2 3

√

−q

2
− a

3

}

.

and the roots are real with
(

2 3
√

− q
2 − a

3

)

being

a simple root and ( 3
√

q
2 − a

3 ) being a double
root.

– If � > 0, then using the same arguments, we
obtain

u3 = −q + √
�

2
∈ R, v3 = q + √

�

2
∈ R,

and

u1 = 3

√

−q + √
�

2
∈ R, v1 = 3

√

q + √
�

2
∈ R,

u2 = 3

√

−q + √
�

2

(

−1

2
+ i

√
3

2

)

, v2 = 3

√

q + √
�

2

(

−1

2
− i

√
3

2

)

,

u3 = 3

√

−q + √
�

2

(

−1

2
− i

√
3

2

)

, v3 = 3

√

q + √
�

2

(

−1

2
+ i

√
3

2

)

.

We can then deduce x1 ∈ R, x2, x3 ∈ C.
– If � < 0, then

u3 =
(

−q + i
√−�

2

)

∈ C, v3 =
(

q + i
√−�

2

)

∈ C.

Using the trigonometric representation of a
complex number, we can write

u3 = r(cos(ϕ) + i sin(ϕ)),

with r2 = (− q
2

)2 −� = (−p
3

)3 and cos(ϕ) =
− q

2
√

(− p
3 )3

. We know that

u = r1/3
(

cos
(ϕ

3

)

+ isin
(ϕ

3

))

and similarly

v = r1/3
(

−cos + isin
(ϕ

3

))

.

Then, x = {2r1/3cos(
ϕ
3 ) −

a
3 , 2r1/3cos(

ϕ+2π
3 ) − a

3 , 2r1/3cos(
ϕ+4π

3 ) − a
3 }

and the roots of Eq. 31 are distinct and real.

Now, we apply this derivation to our equations:

F(n)= −n(n3−(A−2)n2−(A+B−2)n−(A−1))

1 + n + n2
. (35)

We want to find the roots (or at least their sign) of the cubic
polynomial on the numerator:

P(n) = n3 − (A − 2)n2 − (A + B − 2)n − (A − 1), (36)

when A < 1 and B > 2 − A. First, using the Descartes’
rule of signs, we know that this polynomial has either two
or no positive roots. Moreover, we know that P(n) → +∞
(respectively −∞) when n → +∞ (respectively −∞);
P(0) = −(A − 1) > 0, P ′(0) = −(A + B − 2) < 0. Now
we apply Cardan’s method. Using the same notation given
in the derivation above, we have

a=−(A− 2)>0, b=−(A+B − 2)<0, c=−(A− 1)>0

and thus

q = 2a2 − 9b + 27c

27
> 0, p = 3b − a2

3
< 0.

Denoting � as the determinant defined in the derivation
above, we have:

– If � > 0, then there is only one real root and thus it
cannot be positive. Moreover, as P(0) > 0 and P(n) do
not change sign for n > 0, we conclude that P(n) > 0
for all n > 0,

– If � = 0, there are only two real roots and the sim-

ple one is 2 3
√

− q
2 − a

3 < 0. Denoting n∗
2 as the second

real root, we have P
(

n∗
2

) = P ′ (n∗
2

) = 0 and P only

changes sign at the simple root 2 3
√

− q
2 − a

3 < 0. As

P(0) > 0, we have P(n) ≥ 0 when n > 0,
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– If � < 0, we know that the polynomial has three real
roots n∗

0, n∗
1 and n∗

2 such that

P(n) = (n − n∗
0)(n − n∗

1)(n − n∗
2), (37)

and knowing that P(0) > 0 and P ′(0) < 0; this implies
that n∗

0 < 0 < n∗
1 < n∗

2, P(n) > 0 when n ∈ (0, n∗
1),

P(n) < 0 when n ∈ (

n∗
1, n

∗
2

)

and P(n) > 0 when
n > n∗

2.

As F(n) = −nP (n)

1+n+n2 , we obtain the required conclusion
about the shape of F .

Appendix D: Analysis of the dynamics of hybrid
and invading genotypes for the hybridization
scenario

D.1 Stability analysis of trivial equilibria in the
hybridization model (11)–(12)

In this section, we detail the analysis of the two-dimensional
ODE system (11)–(12) and more precisely the stability anal-
ysis of the trivial equilibrium (0, 0). We first need to com-
pute the Jacobian of the system at the trivial equilibrium:

J (0, 0) = J 0 =
(

J 0
11 J 0

12
J 0

21 J 0
22

)

(38)

where

J 0
11 =AI −(1+n̄N ), J 0

12 = AH

4
, J 0

21 = BIN n̄N

1 + n̄N

+BIN n̄N

and

J 0
22 = AH

2
+ BHNn̄N

2
+ BHNn̄N

2(1 + n̄N )
− (1 + n̄N ).

The stability properties of (0, 0) can be inferred from the
sign of the trace and the determinant of the Jacobian at
(0, 0):

tr(J 0) = J 0
11 + J 0

22, det (J 0) = J 0
11J

0
22 − J 0

12J
0
21. (39)

Indeed, the trivial equilibrium is stable if tr(J 0) < 0 and
det (J 0) > 0. It is an unstable node or unstable spiral if
det (J 0) > 0 and tr(J 0) > 0 and an unstable saddle if
det (J 0) < 0. We know from the positivity of the parameters
that J 0

12, J
0
21 > 0, thus

(

tr(J 0)
)2 − 4det (J 0) = (J 0

11 − J 0
22)

2 + 4J 0
12J

0
21 > 0 (40)

and the eigenvalues of (0, 0)

λ0
1,2 = tr(J 0) ±√[tr(J 0)]2 − 4det (J 0)

2
∈ R (41)

Both eigenvalues are real, which means that the trivial
equilibrium is either a node (stable or unstable) or a saddle.

Note that the trace and the determinant of the Jaco-
bian at (0, 0) only depend on BIN and BHN , given that
AH = AI = A were chosen to be fixed. Our goal is
to determine the parameter space under which either the
trace and the determinant are positive (and (0, 0) will then
be an unstable node) or the determinant is negative (and
(0, 0) will be an unstable saddle): if any of these conditions
(tr(J 0), det (J 0) > 0 or det (J 0) < 0) are met, the trivial
equilibrium (0, 0) will become unstable. For the first case
(i.e. both trace and det > 0), we have the two following
inequations:

tr(J 0) > 0 ⇔ BHN

> − 2(n̄N + 1)

n̄N (2 + n̄N )

(

3A

2
− 2(1 + n̄N )

)

= T 0 > 0 (42)

and

det (J 0) > 0 ⇔ BIN <
4(1 + n̄N )(A − (1 + n̄N ))

An̄N(2 + n̄N )

×
[

A

2
− (1 + n̄N ) + n̄N (2 + n̄N )

2(1 + n̄N )
BHN

]

. (43)

But, when det (J 0) > 0 then tr(J 0) < 0. A det (J 0) > 0
implies that

BHN <

(

(1 + n̄N ) − A

2

)

2(1 + n̄N )

n̄N (2 + n̄N )
< T 0,

as we assumed that A − 1 < 0 in Eq. 14, to meet a sta-
ble trivial equilibrium in Eq. 4. Thus, when hybridization
is allowed, the trivial equilibrium (0, 0) is either a stable
node (det (J 0) > 0 and tr(J 0) < 0) or an unstable saddle
(det (J 0) < 0). The trivial equilibrium (0, 0) is unstable and
thus facilitation is warranted if, and only if, the determinant
becomes negative, i.e when BIN and BHN are such that

BIN >
4(1 + n̄N )(A − (1 + n̄N ))

×An̄N(2+n̄N )

[

A

2
−(1+n̄N )+ n̄N (2+n̄N )

2(1+n̄N )
BHN

]

.(44)

Changing the values of the parameters BIN and/or BHN to
move from a negative determinant to a positive determinant
thus generates a saddle node bifurcation at (0, 0).

D.2 Analysis of the null clines of the hybridization
model (11)–(12)

In this section, we examine the mechanisms underlying the
saddle node bifurcation of (0, 0) by computing the null
clines of Eqs. 11–12, i.e. the points (nI , nH ) in the phase
plane (nI , nH ) such that

n′
I ≡ 0 and n′

H ≡ 0. (45)
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Note that the intersection of these null clines gives the
equilibrium point(s). We computed these null clines for
nI , nH > 0 (Fig. 8) with parameters A and B in Eq. 13
chosen so that 0 is stable in the model with a single species
(here A = 0.8, B = 3). As can be inferred from Eq. 11,
as well as shown in Fig. 8, the null cline for nI , i.e the
curve such that n′

I ≡ 0, neither depends on BHN (Fig. 8a)
nor on BIN (Fig. 8b). Therefore, if we change the values
of these two parameters to change the stability of the trivial
steady state (0, 0) of Eqs. 11–12, only the null cline asso-
ciated with the hybrid population nH changes. When BIN

and BHN are very small (e.g. = 0.5), there is no non-trivial
equilibrium, i.e. the null clines of the two genotypes only
intersect at the stable equilibrium (0,0). With this parame-
ter setting, the invading genotype will go extinct even if it
can hybridize with the native genotype. A small increase
in BIN or BHN (e.g. = 1) gives rise to three equilibrium
points: (0, 0), n1 = (n1

I , n
1
H ) and n2 = (n2

I , n
2
H ), where

the null clines of the two genotypes intersect (Fig. 8). In
this case, the trivial equilibrium is still stable (Fig. 3) but
the stability of the two non-trivial equilibria requires further
analysis (see below). Here, a low density of the invading
genotype will again decline to 0. When large values of BIN

and BHN were chosen (e.g. = 2), the model resulted in
one non-trivial equilibrium n2 only (the intersection of solid
black line and the dotted grey line in Fig. 8). In this case,
(0, 0) is unstable (Fig. 3) but n2 is stable and the densities
of invading and hybrid genotypes will converge to the non-
trivial equilibrium n2 (Appendix D.3). To understand what

happens if the density of invading and hybrid genotype does
not converge to the trivial equilibrium (0, 0), we need to
determine the stability of the non-trivial equilibria. To do so,
we analysed the vector field of Eqs. 11–12 in more detail,
as shown in Appendix D.3. The transition from a solution
with two non-trivial equilibria to a solution with a single
non-trivial equilibrium (Fig. 8) corresponds to a saddle node
bifurcation at (0, 0) (Fig. 3). As the parameters BIN and
BHN increase, the intermediate equilibrium n1 approaches
the trivial equilibrium (0, 0) (Fig. 8), leading to a saddle
node bifurcation. When BIN and BHN were large enough
so that det (J 0) < 0, only two equilibria result, the trivial
(0, 0) which is now a saddle and the non-trivial n2, which is
stable.

D.3 Stability analysis of non-trivial equilibria in the
hybridization model (11)–(12)

To investigate the stability of the non-trivial equilibrium
point(s) of Eqs. 11–12, we analyse the vector field around
the equilibria, as outlined in Murray (2002), chapter 7.3. We
only provide the details for one scenario, the intermediate
equilibrium n1 (dotted line in Fig. 8), as the procedure is the
same, to a large extent, for other non-zero equilibria. At this
point n1:

dnH

dnI

|FI ≡0 >
dnH

dnI

|FH ≡0 > 0, (46)
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Fig. 8 Null clines for invading, genotype, n′
I ≡ 0 (solid black line)

and hybrid genotype n′
H ≡ 0 (grey lines) for different BHN values

(a) or BIN values (b) of 0.5 (solid grey line), 1.5 (dashed grey line),
2 (for BHN ) or 3 (for BIN ) (dotted grey line). The growth rate of the
invading genotype is positive in the areas above its null cline (n′

I ≡ 0:
solid black curve) but negative below it. For the hybrid genotype,

positive growth rate occurs in the areas under the null clines (n′
H ≡ 0:

grey lines) while it is negative above them. The solid circles show the
intersections of the two null clines (black and grey curves) which cor-
respond to different equilibria. Other parameters were BIN = 1 (a) or
BHN = 1 (b), A = 0.8 and B = 3
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where FI and FH are the “growth” functions for the invad-
ing and hybrid genotypes in Eqs. 11–12, that is Eqs. 11
and 12 can be written in term of FI and FH :
{

n′
I (t) = FI (nI , nH )

n′
H (t) = FH (nI , nH )

(47)

Given that FI is positive above and negative below its null
cline, n′

I ≡ 0, (the black curve in Fig. 8) whereas FH is
negative above and positive below its null cline, n′

H ≡ 0,
(the grey curve in Fig. 8) we can conclude that at the very
vicinity of n1,

∂FI

∂nI

|FI ≡0 < 0,
∂FI

∂nH

|FI ≡0 > 0 (48)

and

∂FH

∂nI

|FH ≡0 > 0,
∂FH

∂nH

|FH ≡0 < 0. (49)

This implies that det (J (n1
I , n

1
H )) < 0 so that the non-trivial

equilibrium n1 is a saddle. Using the same analysis for the
other non-trivial equilibrium n2 yields

dnH

dnI

|FI ≡0 <
dnH

dnI

|FH ≡0, (50)

and we can conclude that n2 is stable. We also conclude
from Fig. 8 that there exists a positively invariant set contain-
ing the equilibria and observe that there exists no limit cycle
in this invariant domain. Using Poincaré-Bendixon theory
(as in Murray (2002), chapter 7.3), we conclude that the solu-
tions nI and nH of Eqs. 11–12 converge to an equilibrium
which can only be (0,0) when it is stable or n2 (when it exists).
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